Broad-spectrum kinetic resolution of alcohols enabled by Cu–H-catalysed dehydrogenative coupling with hydrosilanes
نویسندگان
چکیده
The enantioselective silylation of racemic alcohols, where one enantiomer reacts faster than the other, is an alternative approach to established enzymatic and non-enzymatic acylation techniques. The existing art is either limited to structurally biased alcohols or requires elaborate catalysts. Simple substrates, such as benzylic and allylic alcohols, with no coordinating functionality in the proximity of the hydroxy group have been challenging in these kinetic resolutions. We report here the identification of a broadly applicable chiral catalyst for the enantioselective dehydrogenative coupling of alcohols and hydrosilanes with both the chiral ligand and the hydrosilane being commercially available. The efficiency of kinetic resolutions is characterized by the selectivity factor, that is, the ratio of the reaction rates of the fast-reacting over the slow-reacting enantiomer. The selectivity factors achieved with the new method are good for acyclic benzylic alcohols (≤170) and high for synthetically usefully cyclic benzylic (≤40.1) and allylic alcohols (≤159).
منابع مشابه
A Cu‐Catalysed Radical Cross‐Dehydrogenative Coupling Approach to Acridanes and Related Heterocycles
The synthesis of acridanes and related compounds through a Cu-catalysed radical cross-dehydrogenative coupling of simple 2-[2-(arylamino)aryl]malonates is reported. This method can be further streamlined to a one-pot protocol involving the in situ fomation of the 2-[2-(arylamino)aryl]malonate by α-arylation of diethyl malonate with 2-bromodiarylamines under Pd catalysis, followed by Cu-catalyse...
متن کاملDehydrogenative coupling of silanes with alcohols catalyzed by Cu3(BTC)2.
Cu3(BTC)2 is an efficient and reusable heterogeneous catalyst for the dehydrogenative coupling of silanes with alcohols. Activity data and CO adsorption suggest that Cu(II) and in situ generated Cu(I) are the active species. Other MOFs such as Fe(BTC), MIL-101(Cr) and UiO-66(Zr) are unable to promote this cross-coupling.
متن کاملCatalytic dehydrogenative Si-N coupling of pyrroles, indoles, carbazoles as well as anilines with hydrosilanes without added base.
A base-free, catalytic protocol for the dehydrogenative Si-N coupling of weakly nucleophilic N-H groups of heteroarenes or aryl-substituted amines with equimolar amounts of hydrosilanes is reported. Cooperative Si-H bond activation at a Ru-S bond generates a silicon electrophile that forms a Si-N bond prior to the N-H deprotonation by an intermediate Ru-H complex, only releasing H(2).
متن کاملSodium Hydroxide Catalyzed Dehydrocoupling of Alcohols with Hydrosilanes.
An O-Si bond construction protocol employing abundantly available and inexpensive NaOH as the catalyst is described. The method enables the cross-dehydrogenative coupling of an alcohol and hydrosilane to directly generate the corresponding silyl ether under mild conditions and without the production of stoichiometric salt byproducts. The scope of both coupling partners is excellent, positioning...
متن کاملCross-dehydrogenative coupling for the intermolecular C–O bond formation
The present review summarizes primary publications on the cross-dehydrogenative C-O coupling, with special emphasis on the studies published after 2000. The starting compound, which donates a carbon atom for the formation of a new C-O bond, is called the CH-reagent or the C-reagent, and the compound, an oxygen atom of which is involved in the new bond, is called the OH-reagent or the O-reagent....
متن کامل